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Effective mass in quantum effects of radiation pressure
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Abstract. We study the quantum effects of radiation pressure in a high-finesse cavity with a mirror coated
on a mechanical resonator. We show that the optomechanical coupling can be described by an effective
susceptibility which takes into account every acoustic modes of the resonator and their coupling to the
light. At low frequency this effective response is similar to a harmonic response with an effective mass
smaller than the total mass of the mirror. For a plano-convex resonator the effective mass is related to
the light spot size and becomes very small for small optical waists, thus enhancing the quantum effects of
optomechanical coupling.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 42.50.Lc Quantum fluctuations, quantum noise,
and quantum jumps – 43.40.+s Structural acoustics and vibration

Radiation pressure exerted by light plays an important
role in quantum limits of very precise optical measure-
ments. Quantum noise in interferometers has two funda-
mental sources, the photon noise of the laser beam and
the fluctuations of the mirror’s position due to radiation
pressure. Both lead to a quantum limit for measurement
sensitivity and potential applications of squeezed states
have motivated a large number of works in quantum op-
tics [1,2].

When a movable mirror is exposed to a laser beam, its
position is coupled to the laser intensity via radiation pres-
sure [3]. This optomechanical coupling may be enhanced
using a high-finesse optical cavity that is very sensitive to
small mirror displacements. Such a device is equivalent to
cavities containing a Kerr medium and it has been studied
for squeezing generation [4–7] or quantum non-demolition
measurements [8–10].

Theoretical calculations of these effects are usually
based on a description of the mechanical motion as a sin-
gle harmonic oscillator. This model is well adapted to the
motion of the center of mass for suspended mirrors, such
as the ones of gravitational-wave antennas [11,12]. Radia-
tion pressure can, however, excite internal acoustic modes
of the mirror for which a simple description as a harmonic
oscillator is not appropriate. These internal vibrations in-
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duce a deformation of the mirror which can be coupled to
the light.

In this paper, we study the effect of optomechanical
coupling on quantum fluctuations when internal acoustic
modes of the mirror are considered. We show that the cou-
pling can be described by an effective response of the mir-
ror which takes into account all acoustic modes and their
spatial matching with the light. Similar results have been
obtained for the Brownian motion of mirrors which has
been studied for gravitational-wave interferometers [13–
16]. We show that the same effective response describes
both thermal and radiation pressure effects. This response
can be approximated to a harmonic response at low fre-
quencies and the effective mass of this equivalent pendu-
lum can be much smaller than the total mass of the mirror.
This small effective mass enhances the quantum effects of
optomechanical coupling.

The system studied in this paper is sketched in Fig-
ure 1. It consists of a single-port cavity with a mov-
able mirror coated on the plane side of a mechanical res-
onator. The geometry of the resonator determines the spa-
tial structure of the acoustic modes. The model presented
in this paper is however valid for any geometry. We first
recall the basic properties of the optomechanical coupling
using a simple description in which both the field and the
mechanical resonator are treated as one-dimensional ob-
jects and the mirror motion is described as a harmonic
oscillator (Section 1).

We then study the effect of internal acoustic modes by
taking into account the spatial structure of both the light
and the resonator. We first determine the effect of a defor-
mation of the resonator on the light field (Section 2). We
then study the mechanical motion of the resonator when
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Fig. 1. Model of a Fabry-Perot cavity with a movable mir-
ror. The mirror is coated on the plane side of a plano-convex
mechanical resonator.

its plane side is submitted to the radiation pressure of the
intracavity field. We finally define an effective susceptibil-
ity which describes the optomechanical coupling between
the light beam and the resonator (Section 3). To illus-
trate the quantum effects of radiation pressure we study
the quantum noise reduction of the field reflected by the
cavity (Section 4).

We apply these results in the last section to the case
of a plano-convex resonator (Section 5). Acoustic modes
are then confined near the central axis of the resonator
and their spatial structure can be described by analytical
expressions which are quite similar to Gaussian optical
modes of a Fabry-Perot cavity. We show that this geome-
try leads to a drastic reduction of the effective mass.

1 One-dimensional model of optomechanical
coupling

We recall in this section the basic properties of the op-
tomechanical coupling. For this purpose we neglect the in-
ternal motion of the resonator and we assume that the mir-
ror moves without any deformation of its surface. The light
is only sensitive to the mirror motion in the z-direction
(Fig. 1) and this motion can be completely characterized
by the position z (t) of the mirror at time t.

The effect of the mirror motion on the intracavity field
is a phase shift ψ related to the change of the optical path
followed by the light

ψ (t) = 2kz (t) , (1)

where k is the wave vector of the light. The cavity detuning
thus depends on the cavity length and couples the field to
the mirror motion.

For small mirror displacements, the linear response
theory shows that the Fourier transform z [Ω] of the mir-
ror position is proportional to the applied force [17]

z [Ω] = χ [Ω] (2�kI [Ω] + FT [Ω]) , (2)

where χ is the mechanical susceptibility of the mirror. If
we assume that the mechanical motion is harmonic, this
susceptibility has a Lorentzian shape

χ [Ω] =
1

M (Ω2
M −Ω2 − iΩ2

MΦ [Ω])
, (3)

where M is the mass of the mirror and ΩM its resonance
frequency. The loss angle Φ [Ω] characterizes the damp-
ing of the motion and is related to the quality factor Q
of the resonance by Φ [ΩM] = 1/Q. The first force in (2)
represents the radiation pressure exerted by the intracav-
ity field. It is proportional to the momentum exchange
2�k during a photon reflection and to the light intensity
I normalized as the number of photons reflected on the
mirror by unit time. The second force FT is a Langevin
force describing the coupling of the resonator with a ther-
mal bath. Its spectrum ST [Ω] is related to the mechanical
susceptibility by the fluctuation-dissipation theorem [17]

ST [Ω] = −2kBT
Ω

Im
(

1
χ [Ω]

)
, (4)

where T is the temperature and kB the Boltzmann con-
stant.

Equation (2) shows that the radiation pressure exerted
by the light couples the mirror motion to the light inten-
sity. The mean effect of this coupling is a mean displace-
ment z obtained from equation (2) by a statistical average
of z [Ω = 0]. From equation (1) this leads to a non-linear
phase shift for the mean field in the cavity equal to

ψNL = 4�k2χ [0] I, (5)

where I is the mean intracavity intensity. This intensity-
dependent phase shift is equivalent to an optical Kerr ef-
fect. The cavity with a movable mirror is thus equivalent
to cavities containing a Kerr medium which have been
studied for squeezing generation [18–20] or QND mea-
surements [21,22]. The main differences with a pure Kerr
medium are due to the dynamics of the moving mirror
characterized by the frequency dependence of the suscep-
tibility χ [Ω] and to the presence of thermal noise.

The non-linear phase shift ψNL is an important pa-
rameter to determine the efficiency of the optomechanical
coupling. Quantum effects are significant if this phase shift
is of the order of the cavity losses [10]. In this case the dis-
placement z induced by the mean radiation pressure is of
the order of the width λ/F of the cavity resonance (λ is
the optical wavelength and F is the cavity finesse). This
condition actually corresponds to the observation of bista-
bility in the cavity. As usual in quantum optics, quantum
effects are important near the bistability turning points.
This condition depends on the optical characteristics of
the system, such as the cavity finesse or the light inten-
sity. It also depends on the mechanical properties of the
resonator (Eq. (5)). In particular, quantum effects induced
by optomechanical coupling are inversely proportional to
the mass of the resonator.

2 Light reflexion on a moving mirror

We have shown in the previous section that the optome-
chanical coupling is based on two complementary effects.
The first one is the phase shift of light induced by the mir-
ror motion. The second effect is that the mirror moves in
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response to radiation pressure. We examine in this section
the first effect when internal modes of the resonator are
taken into account.

Light is sensitive only to longitudinal displacements
of the mirror. A longitudinal deformation of the plane
side of the resonator can be described by its displacement
u (r, z = 0, t) in the z-direction at every radial point r of
the surface (the origin of the cylindrical coordinates is
taken at the center of the mirror, see Fig. 1). The electric
field in front of the moving mirror can be written as

E (r, t) = v0 (r)α (t) e−iω0t, (6)

where α (t) is the slowly varying amplitude of the field, ω0
the optical frequency and v0 (r) the spatial structure of the
beam in the z = 0 plane. In the paraxial approximation,
the optical modes of the cavity are Gaussian modes with
their waist at position z = 0 [23]. Assuming the incident
beam matched to the fundamental mode of the cavity, the
spatial structure v0 (r) of the field is given by

v0 (r) =

√
2/π
w0

e−r2/w2
0 , (7)

where w0 is the optical waist which depends on the geom-
etry of the cavity.

The spatial structure of the reflected field is modified
by the mirror motion since the field wave front is distorted
and reproduces after reflection the shape of the mirror. At
every radial point r of the mirror, the optical path followed
by the light is changed by the displacement and the field
experiences a local phase shift equal to 2ku (r, z = 0, t) .
The reflected field E′ (r, t) is then equal to

E′ (r, t) = v0 (r)α (t) e−iω0te2iku(r,z=0,t). (8)

Denoting {vn (r)} the basis of Gaussian modes of the cav-
ity, one can write the reflected field as a sum over all modes

E′ (r, t) =
∑

n

〈
v0e

2iku(z=0,t), vn

〉
vn (r)α (t) e−iω0t, (9)

where the brackets stand for the overlap integral in the
z = 0 plane

〈f, g〉 =
∫

z=0

d2rf (r) g (r) . (10)

Equation (9) shows that the mirror deformation induces a
diffusion of the light into all optical modes. This diffusion
is however limited by the cavity and it becomes negligible
for a non-degenerate and high-finesse cavity. In this case,
modes in the sum (9) evolve at a frequency about the
resonance frequency ω0 of the fundamental mode whereas
the differences between the resonance frequencies of these
modes are large compared to the cavity bandwidth. As a
consequence, all modes except the fundamental one are
filtered by the cavity bandwidth and cannot propagate in
the cavity. One can show that the diffusion in those modes
is equivalent to losses for the fundamental mode and that
these losses become negligible for a high-finesse cavity [24].

Only the fundamental mode has thus a significant contri-
bution in the sum (9) and we obtain

E′ (r, t) =
〈
v0e

2iku(z=0,t), v0

〉
E (r, t) . (11)

For small displacements u this expression can be approx-
imated to

E′ (r, t) ≈ [
1 + 2ik

〈
u (z = 0, t) , v20

〉]
E (r, t) . (12)

The field thus experiences a global phase shift ψ (t) which
can be written as

ψ (t) = 2kû (t) , (13)

where û (t) is the displacement of the mirror averaged over
the optical waist:

û (t) =
〈
u (z = 0, t) , v20

〉
. (14)

The effect of the mirror motion on the intracavity field is
thus equivalent to the one obtained in the one-dimensional
model. It corresponds to a phase shift given by an equa-
tion similar to (1) where the one-dimensional displacement
z (t) is replaced by the averaged displacement û (t). All re-
sults concerning the effect of the mirror motion on the field
can thus be generalized to a mechanical resonator. The
light is only sensitive to the displacement û of the mirror
which takes into account the spatial overlap between the
intracavity field and the mirror motion. In the next sec-
tion we determine this displacement when the resonator
is submitted to the radiation pressure of the intracavity
field.

3 Radiation pressure effects

Spatial and frequency characteristics of the acoustic
modes depend on the geometry and acoustic properties of
the mechanical resonator. To determine the effect of radi-
ation pressure on the mirror motion, it is only necessary
to assume that these modes are described by a set of dis-
placements {un(r)} which forms a basis of the resonator
motion. Each mode n obeys a propagation equation inside
the resonator [25]

c2t∆un +
(
c2l − c2t

)∇ (∇ · un) +Ω2
nun = 0, (15)

and fulfills the boundary conditions corresponding to a
free resonator (see Appendix). In this equation Ωn is the
eigenfrequency of mode n and cl, ct are the longitudinal
and transverse sound velocities related to the Lamé con-
stants λ and µ of the resonator and to its density ρ by

cl =
√

(λ+ 2µ) /ρ, (16a)

ct =
√
µ/ρ. (16b)

Any displacement u (r, t) can be expressed as a linear
combination of the acoustic modes un (r):

u (r, t) =
∑

n

an (t)un (r) , (17)
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where an (t) is the time-dependent amplitude of mode n.
Using this decomposition we can determine the evolution
of u (r, t) when a radiation pressure force is applied on
the plane side of the resonator. The total energy E of the
resonator is the sum of the kinetic energy, the potential
energy and the energy associated with the external force.
It can be decomposed in the following form (see the ap-
pendix):

E=
∑

n

{
1
2
Mn

(
dan

dt

)2

+
1
2
MnΩ

2
na

2
n− 〈Frad,un〉 an

}
. (18)

Mn represents the mass of the acoustic mode n which is
proportional to the volume of the mode inside the res-
onator:

Mn = ρ
∫

V

d3r |un (r)|2 . (19)

The term 〈Frad,un〉 in equation (18) represents the spatial
overlap of the scalar product between the radiation pres-
sure Frad and the acoustic mode un (Eq. (10)). The radia-
tion pressure is directed along the z-axis and its amplitude
Frad (r, t) at radial position r of the plane side and at time
t is related to the intracavity intensity I (t) = |α (t)|2 and
to the spatial structure v0 of the field by

Frad (r, t) = 2�kI (t) v20 (r) . (20)

The total energy (Eq. (18)) appears as the sum over all
modes n of the energies of forced harmonic oscillators.
From Hamilton’s equations one deduces that each mode
amplitude an (t) obeys the evolution equation

d2an

dt2
+Ω2

nan =
1
Mn

〈Frad,un〉 . (21)

This equation can be written in the Fourier space as

an [Ω] = χn [Ω] 〈Frad [Ω] ,un〉 , (22)

where χn [Ω] = 1/Mn

(
Ω2

n −Ω2
)

is the susceptibility in
the absence of dissipation for a harmonic oscillator of mass
Mn and eigenfrequency Ωn. The resonator can thus be
considered as a set of independent harmonic oscillators,
each oscillator being associated with an acoustic mode.
These oscillators are driven by an external force which
corresponds to the projection of the radiation pressure
onto the spatial structure of the acoustic mode in the z = 0
plane.

Up to now we have assumed that the resonator has no
damping. The coupling with a thermal bath can be de-
duced from the Navier-Stokes equation [25] or from a gen-
eralization of the approach used in the one-dimensional
model. Each acoustic mode is indeed equivalent to a har-
monic oscillator and its damping can be described by a
dissipative part added to the mechanical susceptibility and
by an additional Langevin force. The susceptibility χn of
the acoustic mode n has thus an expression similar to the
one-dimensional case:

χn [Ω] =
1

Mn (Ω2
n −Ω2 − iΩ2

nΦn [Ω])
, (23)

where Φn [Ω] is the loss angle of mode n. The amplitude
an of mode n is now given by

an [Ω] = χn [Ω] (〈Frad [Ω] ,un〉 + FT,n [Ω]) , (24)

where FT,n is a Langevin force describing the coupling
of mode n with the thermal bath. We assume that these
forces are statistically independent of each other and that
their spectra are related to the susceptibilities χn through
fluctuation-dissipation theorem (Eq. (4)). Acoustic modes
are then independent and the equation of motion for each
amplitude an (Eq. (24)) corresponds to the usual expres-
sion for a damped harmonic oscillator driven by the pro-
jection of the radiation pressure.

We have shown in the previous section that the effect
of the mirror deformation on the intracavity field only
depends on the longitudinal displacement û (t) which cor-
responds to the displacement in the z = 0 plane averaged
over the beam waist (Eq. (14)). From equations (14), (17),
(20) and (24) this displacement can be expressed in terms
of the intracavity intensity I and of thermal fluctuations:

û [Ω] = χeff [Ω] (2�kI [Ω] + FT [Ω]) . (25)

χeff appears in this equation as an effective susceptibility
given by

χeff [Ω] =
∑

n

〈
v20 , un

〉2
χn [Ω] , (26)

where un stands for the z-component of the acoustic mode
un. The effective susceptibility χeff is then equal to the
sum of all susceptibilities χn weighted by the overlap be-
tween the acoustic mode and the transverse intensity dis-
tribution v20 . The force FT in equation (25) is an effective
Langevin force related to the forces FT,n of each acoustic
modes by

FT [Ω] =
∑

n

〈
v20 , un

〉 χn [Ω]
χeff [Ω]

FT,n [Ω] . (27)

The spectrum of FT can be determined using the inde-
pendence of the Langevin forces FT,n and their relation
to susceptibilities χn (Eq. (4)). We find that the force FT
is related to χeff by the fluctuation-dissipation theorem

ST [Ω] = −2kBT
Ω

Im
(

1
χeff [Ω]

)
. (28)

This means that the resonator in the absence of external
force is in thermodynamic equilibrium at temperature T .
Equation (25) also shows that the effective susceptibility
χeff describes both the effects of radiation pressure and of
thermal noise represented by the Langevin force FT.

Results obtained here are similar to the ones presented
in section 1 for a one-dimensional model. The longitudi-
nal displacement û is related to the intracavity intensity
I and to thermal fluctuations by an expression similar to
equation (2). The coupling between the resonator and the
Gaussian light beam is completely described by the ef-
fective susceptibility χeff . This susceptibility indeed takes
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into account all acoustic modes of the resonator and their
spatial matching with the light. Treatments made in the
framework of the one-dimensional model can thus be gen-
eralized by replacing the mirror displacement z (t) by the
longitudinal displacement û (t) and the harmonic suscep-
tibility χ by the effective susceptibility χeff . This is illus-
trated in the next section where we study the quantum
noise reduction of the field reflected by the cavity.

4 Quantum noise reduction

Squeezed-state generation has already been studied for a
single-ended cavity containing a pure Kerr medium [18–
20] or for a cavity with a harmonically suspended mir-
ror [5]. In this section we extend these results to the case
of a mirror coated on a mechanical resonator. We thus
consider the system sketched in Figure 1 and we deter-
mine the quantum fluctuations of any quadrature of the
reflected beam.

For a nearly resonant high-finesse cavity, we have the
following relations between the complex amplitudes αin,
α and αout of the incident, intracavity and reflected fields
respectively:

τ
dα
dt

= − [γ − iΨ (t)]α (t) +
√

2γαin (t) , (29a)

αout (t) = −αin (t) +
√

2γα (t) . (29b)

The first relation determines the dynamics of the intracav-
ity field α. τ is the round trip time, γ the damping rate of
the cavity (1 − γ and

√
2γ are respectively the reflection

and transmission of the input mirror, with γ � 1) and
Ψ is the cavity detuning assumed small compared to 1. Ψ
depends on the cavity lentgh and couples the field to the
mirror motion. It can be written as the sum of the cavity
detuning Ψ0 without light and the effect of the averaged
displacement û (t) (Eq. (13)):

Ψ = Ψ0 + 2kû. (30)

The mean cavity detuning Ψ differs from Ψ0 by the
contribution due to the mean mirror displacement. Using
equation (25) this contribution appears as a non-linear
phase shift ΨNL related to the mean intracavity intensity
I by an expression similar to equation (5):

Ψ = Ψ0 + ΨNL, (31a)

ΨNL = 4�k2χeff [0] I. (31b)

The behavior of the mean fields is thus the same as the one
for a cavity containing a pure Kerr medium. In particular
the non-linear phase shift is responsible for the bistability
of the system [5]. From equations (29) the mean intracav-
ity intensity is related to the incident power P in by(

γ2 + Ψ
2
)
I = 2γ

λ

hc
P in. (32)

Due to the intensity dependence of the non-linear phase
shift, one can obtain different intracavity intensities for a

given incident power. This bistable behavior can be char-
acterized by the inverse slope σ = dP in/dI of the curve
giving the intracavity intensity as a function of the inci-
dent power. σ is proportional to

σ ∝ γ2 + Ψ
2

+ 2ΨΨNL. (33)

The positive, negative, and null values of σ correspond, re-
spectively, to stable branches, unstable branch, and turn-
ing points [20].

To determine the fluctuations δαout [Ω] of the field
reflected by the cavity, we use the semiclassical method
in which quantum fluctuations are treated as classical
random variables associated with the Wigner distribu-
tion [26–28]. Their evolution is deduced from the classical
equations (29) linearized around the mean state. We ob-
tain(
γ − iΨ − iΩτ) δα [Ω] =

√
2γδαin [Ω] + iαδΨ [Ω] , (34a)

δαout [Ω] =
√

2γδα [Ω] − δαin [Ω] , (34b)
αδΨ [Ω]= χ̃eff [Ω]ΨNL (δα [Ω]+δα∗ [Ω])

+2kαχeff [Ω]FT [Ω] , (34c)

where α is the mean intracavity field and χ̃eff [Ω] =
χeff [Ω] /χeff [0] is the mechanical susceptibility normal-
ized to 1 at zero frequency. We deduce from these equa-
tions the input-output relations for the field which give the
output field fluctuations δαout as a function of the input
field fluctuations δαin and of the Langevin force FT:

δαout [Ω] =
{
c1 [Ω] δαin [Ω] + c2 [Ω] δαin∗ [Ω]

+cT [Ω]FT [Ω]} , (35)

where the coefficients c1 [Ω], c2 [Ω] and cT [Ω] depend on
the system parameters

c1[Ω]=
1
∆

{(
γ+iΨ

)(
γ+iΨ+2iΨNLχ̃eff [Ω]

)
+(Ωτ)2

}
,(36a)

c2[Ω] =
2i
∆
γΨNLχ̃eff [Ω] , (36b)

cT[Ω]=
2i
∆

√
2γkα

(
γ + iΨ − iΩτ)χeff [Ω] , (36c)

∆ = (γ − iΩτ)2 + Ψ
2

+ 2ΨΨNLχ̃eff [Ω] . (36d)

From these relations one can determine the spectrum
Soutθ for any quadrature αoutθ of the reflected field defined
by

δαoutθ [Ω] = e−iθδαout [Ω] + eiθδαout∗ [Ω] , (37a)

δαoutθ [Ω] δαoutθ [Ω′] = 2πδ (Ω +Ω′)Soutθ [Ω] , (37b)

where the bar stands for the average over the Wigner dis-
tribution. Equations (35) and (36) show that the quantum
properties of the reflected field only depend on a few pa-
rameters. The cavity is characterized by the damping γ
which is related to its finesse F = π/γ, by the cavity
bandwidth Ωcav = γ/τ and by the mean detuning Ψ . The
mirror motion is described by the non-linear phase shift
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ΨNL and by the frequency dependence χ̃eff of the mechan-
ical response. The last coefficient cT describes thermal ef-
fects associated with the Brownian motion of the mirror.
To obtain quantitative values for the noise reduction, it
is necessary to determine the mechanical response of the
resonator which may depend on its geometry. We study
in the next section the case of a plano-convex resonator.

Note finally that the differences with a pure Kerr effect
are only due to the frequency dependence of the mechan-
ical response and to thermal fluctuations. One gets the
usual expressions for a Kerr medium by taking χ̃eff [Ω] = 1
and FT [Ω] = 0 in equations (35) and (36).

5 Optomechanical coupling with a
plano-convex resonator

We consider in this section that the resonator has a plano-
convex geometry with a mirror coated on its plane side
(Fig. 1). We first determine the analytical expression of
the effective susceptibility. We then study the quantum
noise reduction of the field reflected by the cavity and
we finally derive the effective mass associated with the
optomechanical coupling.

5.1 Effective susceptibility

If the resonator thickness h0 is much smaller than the cur-
vature radius R of the convex side, the propagation equa-
tion (15) can be solved using a paraxial approximation and
one gets analytical expressions for the acoustic modes cor-
responding to Gaussian modes [29]. Only modes that have
a non-zero overlap with the light intensity contribute to
the effective susceptibility (Eq. (26)). As a consequence we
disregard shear modes which induce no longitudinal dis-
placement and we consider only the compression modes
that have a cylindrical symmetry. Those modes are de-
fined by two integers, a longitudinal index n and a trans-
verse index p, and the longitudinal displacement un,p(r, z)
at point of radial coordinate r and axial coordinate z is
given by

un,p (r, z) = e−r2/w2
nLp

(
2r2/w2

n

)
cos

(
nπ

h (r)
z

)
. (38)

un,p is composed of a transverse Gaussian structure with
a waist wn, a transverse Laguerre polynomial Lp and a
cosine in the propagation direction. h (r) is the resonator
thickness at radial position r given by

h (r) ≈ h0 − r2

2R
. (39)

The acoustic waists wn depend on the longitudinal index
n:

w2
n =

2h0
nπ

√
Rh0. (40)

The acoustic modes un,p are solution of the propagation
equation inside the resonator and each mode evolves with
an eigenfrequency Ωn,p given by

Ω2
n,p = Ω2

M

[
n2 +

2
π

√
h0
R
n (2p+ 1)

]
, (41)

where ΩM = πcl/h0.
One can now derive an analytical expression for the

effective susceptibility as an infinite sum over all modes
{n, p} (Eq. (26)). In this expression the mass Mn of the
acoustic mode {n, p} (Eq. (19)) only depends on the lon-
gitudinal index n and is equal to

Mn =
π

4
ρh0w

2
n. (42)

This mass is proportional to the volume of the acoustic
mode and is smaller than the total mass of the resonator.
We can also derive the overlap between acoustic and op-
tical modes〈

v20 , un,p

〉
=

2w2
n

2w2
n + w2

0

(
2w2

n − w2
0

2w2
n + w2

0

)p

. (43)

The overlap only depends on the ratio wn/w0 between
acoustic and optical waists.

We assume for simplicity that the loss angles Φn,p [Ω]
are the same for all modes and are constant in frequency.
As a consequence these loss angles are simply related to
the quality factor Q of the fundamental mode {1, 0} of the
resonator by

Φn,p [Ω] ≡ 1/Q. (44)

These equations allow to compute any parameters of
the optomechanical coupling. For example the non-linear
phase shift ΨNL is related through equation (31b) to the
effective susceptibility at zero frequency which is given by

χeff [0] =
∑
n,p

〈
v20 , un,p

〉2
MnΩ2

n,p

. (45)

This sum can be numerically computed. In the following
we consider a small plano-convex resonator of thickness
h0 equal to 1.5 mm and with a curvature radius R of the
convex side equal to 150 mm. For these values the acoustic
waist w1 of the fundamental mode is equal to 3.8 mm. It
is much larger than the optical waist w0 which is typically
of the order of 100 µm for a cavity of 1 mm long with
a curvature radius of the input mirror equal to 1 m. As
a consequence the overlap (43) slowly decreases with the
mode indices {n, p} and it is necessary to sum over more
than 106 modes to obtain a precision better than 10−3.

5.2 Optimum squeezing

We determine now the optimum squeezing Sopt [Ω] of the
reflected field, that is the minimum value of the spectrum
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Fig. 2. Optimum noise spectrum Sopt [Ω] of the reflected field
as a function of frequency. Curves (a) and (b) are obtained at
T = 4 K and at zero temperature, respectively. The dashed
curve (c) corresponds to the pure Kerr effect for the same pa-
rameters (Ψ = −0.2γ, ΨNL = 0.28γ).

Soutθ [Ω] obtained at every frequency Ω by scanning the
quadrature θ. We assume that the mechanical resonator
is made of silica (density ρ = 2200 kg/m3, longitudinal
sound velocity cl = 5960 m/s). Its fundamental resonance
frequency ΩM/2π is then equal to 2 MHz and we take a
quality factor Q of 106. The cavity is characterized by its
damping γ equal to 10−5 (cavity finesse F = 3 × 105)
and its working point is defined by the mean detuning
Ψ chosen equal to −0.2γ. We also assume that the cavity
bandwidth Ωcav = γ/τ is equal to ΩM and that the optical
wavelength λ is equal to 800 nm.

To determine the non-linear phase shift ΨNL, we com-
pute the effective susceptibility χeff [0] at zero frequency
from equation (45). We obtain χeff [0] = 1.4 × 10−8 m/N
for an optical waist w0 of 200 µm. From equations (31b)
and (32) one then gets a non-linear phase shift ΨNL equal
to 0.28γ for an incident power P in of 10 mW. Note that
these values correspond to a positive slope σ of the bista-
bility curve, equal to 0.93γ2 (Eq. (33)). The working point
is thus on a stable branch of the bistability curve.

Figure 2 shows the optimum squeezing Sopt [Ω] as a
function of frequency. Curve (a) is obtained at a tem-
perature of 4 K. The noise spectrum exhibits a strong
reduction over a wide frequency range from zero up to
the first resonance frequency of the resonator. For higher
frequencies the spectrum shows an excess noise at every
mechanical resonance frequencies.

It is instructive to compare this spectrum to the ones
obtained at zero temperature (curve b) and for a pure Kerr
effect with the same parameters ΨNL and Ψ (curve c). At
low frequencies (Ω < ΩM) the noise spectrum at zero tem-
perature (curve b) is similar to the one obtained with a
Kerr effect (curve c). The whole effect of the mechanical
motion can be interpreted as a non-linear phase shift ΨNL
for the light. At finite temperatures (curve a), the Brown-
ian motion of the mirror slightly increases the noise. Note
that this effect depends on the dissipation mechanisms

in the resonator. In particular the large increase at zero
frequency is due to the choice of a constant loss angle.
One would obtain less thermal noise in the framework of
a Navier-Stockes model for which the loss angle is a linear
function of frequency.

For higher frequencies (Ω > ΩM) the dynamics of the
mechanical resonator plays an important role. At zero
temperature (curve b) we observe a series of dispersion-
shaped resonances centered on every mechanical reso-
nance Ωn,p, with an important noise reduction for frequen-
cies slightly below each resonance. Thermal noise however
masks this behavior since the Brownian motion is concen-
trated around the mechanical resonances and increases the
noise (curve a).

To summarize this discussion, it appears that the most
interesting frequency domain for quantum noise reduc-
tion is the low-frequency domain (Ω < ΩM). For suffi-
ciently low temperature the noise behavior is similar to
the one obtained with a pure Kerr effect and it mainly
depends on the non-linear phase shift ΨNL. More precisely
the frequency dependence of the noise spectrum roughly
corresponds to a low-pass filtering due to the cavity band-
width and the amplitude of noise reduction becomes im-
portant near the bistability turning points [20]. To reach
these points the non-linear phase shift ΨNL must be large
enough, that is of the order of γ.

5.3 Effective mass

The non-linear phase shift depends on the mechanical and
optical properties of the system. In particular it is related
to the spatial overlap between the various acoustic modes
and the light (Eq. (45)). Figure 3 shows the optimum
squeezing Sopt [Ω] for different values of the optical waist
w0 (400, 200 and 100 µm), the other parameters being
identical to the ones of Figure 2 (Pin = 10 mW, γ = 10−5,
Ψ = −0.2γ, T = 4 K and Q = 106). For each curve we
have computed the effective susceptibility χeff [0] at zero
frequency and we have determined the non-linear phase
shift ΨNL. Curves (a) to (c) correspond to increasing non-
linear phase shifts (0.11γ, 0.28γ and 0.62γ, respectively)
and to decreasing slopes of the bistability curve (0.99γ2,
0.93γ2 and 0.79γ2, respectively).

One observes a drastic increase of the noise reduction
when w0 decreases. This result can be interpreted as a re-
duction of the effective mass associated with the optome-
chanical coupling. Quantum effects observed in Figures 2
and 3 in the low-frequency domain are actually similar
to the ones obtained with a harmonically suspended mir-
ror. The effective susceptibility of the resonator is thus
equivalent at low frequency to the susceptibility of a sin-
gle harmonic oscillator with a resonance frequency ΩM.
The mass of this equivalent pendulum is however differ-
ent from the total mass of the resonator since it depends
on the spatial matching with the light. This effective mass
Meff can be deduced from a comparison between the ef-
fective susceptibility χeff [0] at zero frequency and the one
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Fig. 3. Optimum noise spectra Sopt [Ω] of the reflected field
for different optical waists w0. Curves (a) to (c) correspond
respectively to 400, 200 and 100 µm.

of a harmonic oscillator (Eqs. (3) and (45)):

1
MeffΩ2

M

=
∑
n,p

〈
v20 , un,p

〉2
Mn,pΩ2

n,p

. (46)

The effective mass is related to the masses of all acous-
tic modes coupled to the light. The number of acoustic
modes contributing to the sum strongly depends on the
light waist. The typical variation length of the Laguerre
polynomial Lp

(
2r2/w2

n

)
in the spatial structure of the

acoustic mode {n, p} is wn/
√
p. The overlap

〈
v20 , un,p

〉
is

thus equal to 1 as long as w0 is much smaller than wn/
√
p

(Eq. (43)). For a given value of n, the number of trans-
verse modes which contribute to the effective mass is pro-
portional to w2

1/nw
2
0 and it increases when w0 decreases.

As a consequence the mass becomes smaller and quantum
effects of radiation pressure become larger.

From equations (41) to (43) one can express the effec-
tive mass as a function of the waists w1, w0 and of the
mass M1 of the fundamental mode:

M1

Meff
=

∑
n,p

4w4
1

(2w2
1 + nw2

0)
2

(
2w2

1 − nw2
0

2w2
1 + nw2

0

)2p

× 1

n+
2
π

√
h0
R

(2p+ 1)

. (47)

The solid line in Figure 4 shows the variation of the effec-
tive mass as a function of the ratio w1/w0 for a resonator
of thickness h0 = 1.5 mm and of curvature radius R = 150
mm. It clearly appears that this mass decreases with the
optical waist and very small values can be reached. The
mass M1 of the fundamental mode is equal to 37 mg
(Eq. (42)) and one gets an effective mass of 1 mg for an
optical waist equal to w1/10 (380 µm) and a mass of 0.2
mg for a waist of 100 µm. Such small values would be very
difficult to obtain with a harmonically suspended mirror

M1

0.1 1 10

1000

100

10

1

0.1

0.01

Mopt

Meff

w1 / w0

Fig. 4. Effective mass Meff of the resonator as a function of
the ratio between fundamental acoustic and optical waists. The
dashed curve represents the optical mass Mopt related to the
volume of the resonator illuminated by the light. The vertical
scale is normalized to the mass M1 of the fundamental acoustic
mode (37 mg).

for which the mass associated with the global motion is
the total mass of the mirror.

One can get a simple physical insight into the effective
mass in the case of a resonator thickness much smaller
than the curvature radius of the convex side (h0 � R).
We can then assume that the transverse modes of the
resonator are degenerate, that is the resonance frequencies
Ωn,p are independent of p. The sum over p in equation (47)
is a simple geometric sum and one gets an estimate Mopt

of the effective mass given by

M1

Mopt
=
w2
1

2w2
0

∑
n

1
n2

=
π2

12

(
w1

w0

)2

. (48)

Using the expression of M1 (Eq. (42)), we finally obtain

Mopt =
12
π2

(π
4
ρh0w

2
0

)
. (49)

The term in brackets corresponds to the mass of the part
of the resonator illuminated by the light beam. This op-
tical mass is a good approximation of the effective mass
Meff as shown by the dashed curve in Figure 4. We have
thus shown that the effect of the resonator motion on the
light is equivalent to the one of a harmonically suspended
mirror of mechanical resonance frequency ΩM and of mass
related to the light spot size. This mass can of course be-
come very small for a small optical waist.

6 Conclusion

We have studied the quantum effects due to radiation pres-
sure in a high-finesse cavity with a mirror coated on a
mechanical resonator. We have shown that the optome-
chanical coupling between the Gaussian laser beam and
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the acoustic modes of the resonator leads to a non-linear
phase shift for the light. This phase shift is related to
the intracavity intensity through an effective susceptibility
which takes into account all the acoustic modes and their
coupling to the light. This susceptibility also describes the
effect on the light of the Brownian motion of the mirror.

We have studied the quantum noise reduction of the
field reflected by the cavity. This quantum effect mainly
depends on the behavior of the non-linear phase shift at
low frequency. In this frequency domain the mechanical
response of the resonator can be approximated to a har-
monic response. The effect of optomechanical coupling is
then equivalent to the one obtained with a harmonically
suspended mirror of resonance frequency equal to the fun-
damental resonance frequency of the resonator. The mass
of this equivalent pendulum is however smaller than the
total mass of the mirror, thus enhancing the optomechan-
ical coupling. We have shown that for a plano-convex res-
onator this effective mass is of the order of the optical
mass which corresponds to the volume of the resonator
illuminated by the light. The effective mass can be two
or three orders of magnitude smaller than the total mass
of the mirror and large quantum effects are obtained for
a reasonable input power when the optical waist is small
enough.

This drastic decrease of the effective mass seems to
be a specific behavior of the plano-convex geometry. The
effective susceptibility of a cylindrical mirror has already
been determined at low frequency for the study of thermal
effects in gravitational-wave detectors [13,14]. The reduc-
tion of the effective mass does not exceed a factor 10 below
the total mass of the mirror. The plano-convex geometry
thus allows to get simultaneously a high resonance fre-
quency and a very small mass so that large quantum noise
reduction can be obtained over a wide frequency range.
One can of course obtain significant non-linear phase shifts
with a cylindrical mirror but the fundamental resonance
frequency is very low.

Finally, we have only studied in this paper the quan-
tum noise reduction of the field reflected by the cavity.
Similar results would however be obtained for other quan-
tum effects of radiation pressure such as the possibility
of quantum non-demolition measurement of light inten-
sity [10] or the quantum limit in interferometric measure-
ments. For example, it has been shown that the quantum
limit for measurement sensitivity is proportional to the
susceptibility characterizing the mirror motion [2]. The
quantum limit induced by internal acoustic modes is thus
proportional to the effective susceptibility studied in this
paper. In particular the sensitivity is reduced if mirrors
have small effective masses.

We gratefully acknowledge F. Bondu for the program CYPRES
used to compute the effective susceptibility of a cylindrical mir-
ror. Y. Hadjar acknowledges a fellowship from the Association
Louis de Broglie d’Aide à la Recherche.

Appendix: Propagation equation for a res-
onator submitted to radiation pressure

In this appendix we derive the evolution equation of the
acoustic modes for a resonator submitted to a radiation
pressure force. This derivation is actually similar to the
phonon decomposition in the presence of an external force.

The evolution equation of any displacement u (r, t) can
be deduced from the Lagrangian L = T − U where the
kinetic energy T and the potential energy U are equal
to [25]

T =
∫

V

1
2
ρ

∣∣∣∣∂u∂t
∣∣∣∣2 d3r, (A.1a)

U =
∑
ij

∫
V

1
2
σijuijd3r, (A.1b)

where ρ is the density of the resonator. The strain tensor
uij is given by

uij =
1
2

(
∂uj

∂xi
+
∂ui

∂xj

)
, (A.2)

where ui (i = 1, 2, 3) are the Cartesian components of the
displacement u (r, t) at point r of Cartesian coordinates
xi. The stress tensor σij is related to the strain tensor uij

by Hooke’s law

σij = 2µuij + λ∇ · uδij , (A.3)

where λ and µ are the Lamé constants of the resonator.
We deduce from the Lagrange equations the propagation
equation of u (r, t) in the resonator

ρ
∂2u
∂t2

= µ∆u + (λ+ µ)∇ (∇ · u) . (A.4)

For a free resonator the constraint tensor σij at every point
r of the surface must satisfy the following condition for any
Cartesian index i: ∑

j

σij (r, t)nj = 0, (A.5)

where n is the normal vector at point r.
Acoustic modes are defined as monochromatic solu-

tions un (r) e−iΩnt of equations (A.4) and (A.5). Each
acoustic mode can be decomposed into longitudinal and
transverse components denoted ul

n and ut
n, respectively

and defined by

∇× ul
n = 0, ∇ · ut

n = 0. (A.6)

These components obey the following propagation equa-
tions:

∆ul
n +

Ω2
n

c2l
ul

n = 0, (A.7a)

∆ut
n +

Ω2
n

c2t
ut

n = 0, (A.7b)
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where cl and ct are the longitudinal and transverse sound
velocities (Eq. (16)).

Since the set {un (r)} of acoustic modes forms a basis
for the solutions of equations (A.4) and (A.5), any dis-
placement u (r, t) can be decomposed on these modes with
time-dependent amplitudes an (t) (Eq. (17)). We now de-
termine the total energy E = T + U associated with this
displacement. From equation (A.1a) the kinetic energy T
is equal to

T =
∑

n

1
2
Mn

(
dan

dt

)2

, (A.8)

whereMn is the mass of mode un (Eq. (19)). The potential
energy U is given by equation (A.1b) and can be written
as

U =
∑
i,j

1
2

∫
V

d3r
[
∂ (σijuj)
∂xi

− ∂σij

∂xi
uj

]
. (A.9)

The first term can be transformed into a surface integral
which is equal to zero for a displacement satisfying the
boundary condition (A.5). Using the decomposition of un

into longitudinal and transverse components and the prop-
agation equations (A.7), one then gets

U =
∑

n

1
2
MnΩ

2
n [an (t)]2 . (A.10)

The total energy E is finally equal to

E =
∑

n

{
1
2
Mn

(
dan

dt

)2

+
1
2
MnΩ

2
n [an (t)]2

}
, (A.11)

and appears as the sum of the energies of free harmonic
oscillators.

Up to now we have assumed that the resonator is free
from any external constraint. In the presence of radiation
pressure there is an additional contribution to the energy
corresponding to the work of internal constraints opposed
to the external force

W = −
∫

z=0

d2rFrad (r, t) · u (r, t) . (A.12)

The total energy E is then equal to

E =
∑

n

{
1
2
Mn

(
dan

dt

)2

+
1
2
MnΩ

2
n [an (t)]2

−〈Frad,un〉 an (t)} , (A.13)

where 〈Frad,un〉 is the overlap integral in the z = 0 plane
of the scalar product between the radiation pressure and
the acoustic mode un (Eq. (10)). We have thus shown that

the total energy is the sum over all modes of the energies
of forced harmonic oscillators. The evolution equation (21)
for each mode amplitude an is then deduced from Hamil-
ton’s equations.
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